Face Detection Coupling Texture, Color and Depth Data

نویسندگان

  • Loris Nanni
  • Alessandra Lumini
  • Ludovico Minto
  • Pietro Zanuttigh
چکیده

In this chapter, we propose an ensemble of face detectors for maximizing the number of true positives found by the system. Unfortunately, combining different face detectors increases both the number of true positives and false positives. To overcome this difficulty, several methods for reducing false positives are tested and proposed. The different filtering steps are based on the characteristics of the depth map related to the subwindows of the whole image that contain the candidate faces. The most simple and easiest criteria to use, for instance, is to filter the candidate face region by considering its size in metric units. The experimental section demonstrates that the proposed set of filtering steps greatly reduces the number of false positives without decreasing the detection rate. The proposed approach has been validated on a dataset of 549 images (each including both 2D and depth data) representing 614 upright frontal faces. The images were acquired both outdoors and indoors, with both first and second generation Kinect sensors. This was done in order to simulate a real application scenario. Moreover, for further validation and comparison with the state-of-the-art, our ensemble of face detectors is tested on the widely used BioID dataset where it obtains 100 % detection rate with an acceptable number of false positives. A MATLAB version of the filtering steps and the dataset used in this paper will be freely available from http://www.dei.unipd.it/node/2357.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Face Depth Maps from Color Textures using Canonical Correlation Analysis

We propose a method for estimating face depth maps from color face images. The method is based on Canonical Correlation Analysis (CCA) which exploits the correlation between face color texture and surface depth. The results of experiments conducted on a database of 218 3D scans with corresponding color images show that only a small number of canonical factors are needed to describe the function...

متن کامل

Determining Effective Features for Face Detection Using a Hybrid Feature Approach

Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...

متن کامل

Localization of Facial Regions and Features in Color Images

1 Introduction Recognition of human faces out of still images or image sequences is a research eld of fast increasing interest. There are many diierent applications for systems coping with the problem of face localization and recognition, e.g. model-based video coding, security systems, mug shot matching. Due to variations in illumination, background, visual angle and facial expressions, the pr...

متن کامل

3D Face Recognition system Based on Texture Gabor Features using PCA and Support Vector Machine as a Classifier

Pioneer 2D face recognition based on intensity or color images encounters many challenges, like variation in illumination, expression, and pose variation. In fact, the human face generates not only 2D texture information but also 3D shape information. In this paper, the main objective is to analyze what contributions depth and intensity with texture information make to the solution of face reco...

متن کامل

Effective and precise face detection based on color and depth data

In this work an effective face detector based on the well-known Viola-Jones algorithm is proposed. A common issue in face detection is that for maximizing the face detection rate a low threshold is used for classifying as face an input image, but at the same time using a low threshold drastically increases the number of false positives. In this paper several criteria are proposed for reducing f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018